

Sub-Nyquist Radar Sensing Front-End and Algorithm Eliahu Baransky, Gal Itzhak, Noam Wagner, Idan Shmuel, Rolf Hilgendorf, Eli Shoshan and Prof. Yonina Eldar

Xampling of Radar Signals

Wideband signals can be sampled at rates much lower than their Nyquist rate, given that they have a Finite Rate of Innovation [1,2,3]. Radar signals with a limited number of targets, are FRI signals with the distances and cross sections (RCS) as unknowns. Using our innovative technique, we are able to reconstruct the distances and the cross sections while reducing the sampling rate by a factor of approximately 30 compared to classical Nyquist-based approaches.

Xampling approach

Received Wideband Signal

Reconstructed Signal

Flow of Reconstruction Algorithm

Low-Rate Samples From 4 Channels $C_i[n]$

Extraction of desired Spectrum samples

Signal Proxy

Maximal Projection

Grid Interpolation

Amplitudes Estimations

outputs

References

[1] G. Itzhak, E. Baransky, et al "A hardware prototype for Sub-Nyquist radar sensing", submitted to SCC 2013

[2] R. Tur, Y. C. Eldar, and Z. Friedman, "Innovation rate sampling of pulse streams with application to ultrasound imaging," Signal Processing, IEEE Trans. on, vol. 59, no. 4, pp. 1827–1842, 2011.

[3] K. Gedalyahu, R. Tur, and Y.C. Eldar, "Multichannel sampling of pulse streams at the rate of innovation," Signal Processing, IEEE Trans. on, vol. 59, no. 4, pp. 1491–1504, 2011.

Sub-Nyquist Radar Sensing *Hardware and Supporting System* Idan Shmuel, Eli Shoshan, Rolf Hilgendorf and Prof. Yonina Eldar (Technion) Eran Castiel and Ahsan Aziz (National Instruments)

Pulse in time domain

Pulse in frequency domain

AWR RF Medium simulation

ID-S3 NET='TARGET_N DISTUNT=km VELOCITY=0 DIAM=16 OIAMUNIT=m CTRFRQ=3000-M RCSVAL=18 RAIN_ATTEN=0 d

> NET="TARGET_ DIST=95 DISTUNIT=km VELOCITY=0 DIAM=21 DIAM=21 CTRFRQ=3000 MF RCSVAL=7 RAIN_ATTEN=0 dB

> > SUBCKT . ID=S7 NET='TARGET_MODI DIST=22 DISTUNIT=km VELOGITY=0 DIAM_20 DIAMUNIT=m CTRFRQ=3000 MH2 RCSVAL=4 RAM_ATTEN=0 dB

transmitter

medium and targets receiver front end

PPS- Pulse Pre Sampler

VAL="pulse40 COL=1

CTRFRQ:

TONE ID=A2

FRQ=3000 MH PWR=10 dBm

PHS=0 Deg

CTRFRQ= SMPFRQ=

NOISE=Auto

PNMASK=

ZS=_Z0 Ohm T=_TAMB DegK

PNOISE=No phase no

- Input signal BW< 150MHz
- Crystal filter BW 70KHz
- Modular and flexible design
- Dynamic range 65dB

Supporting Hardware – NI System

3 NI Flex Rio 7965R FPGA and NI 5781 Baseband transceiver create 5 local oscillators waveforms with constant starting phase

System Challenges:

• Start all devices at the same

NI 6672 timing and synchronization module distribute clock and trigger signals

NI 6123 4 channels simultaneous A/D @ 250Ksamp/sec per channel

time with skew less then 1nsec Good synchronization- Low clock jitter and small clock drifts between devices

Connectivity- AWR RF simulation environment to LabView

NI 8133 I7 controller Run AWR , LabView and MATLAB script